MECHANISM OF ACTION OF LIVIDOMYCIN A, A NEW AMINOGLYCOSIDIC ANTIBIOTIC

Nobuyoshi Маснічама

Institute of Applied Microbiology, University of Tokyo, Tokyo

(Received for publication July 19, 1971)

Lividomycin A, a new aminoglycoside^{1,2)}, was observed to inhibit protein synthesis more than nucleic acid syntheses in growing cells of *Escherichia coli*.

In a cell-free system, f2 phage RNAdirected protein synthesis was markedly inhibited by the antibiotic. A similar inhibition was observed with streptomycin (Fig. 1).

Polyphenylalanine synthesis directed by poly U in *E. coli* extract was also significantly affected by lividomycin A (Fig. 2). Inhibition of poly U-directed polypeptide synthesis was lower when $1 \text{ M } \text{NH}_4\text{Cl-}$ washed ribosomes and S-100 were employed. The methods and materials followed those described previously.⁸⁾

The incorporation of leucine, isoleucine and serine (miscoding) into polypeptide in the presence of poly U was increased by the addition of lividomycin A. The *in vitro* miscoding activity seemed to correspond to that of kanamycin (Table 1).

The acetylphenylalanyl-puromycin reaction, and T factor- and G factor associated GTPase reactions were not significantly

Table 1. In vitro miscoding produced by lividomycin A in poly U system.

Antibiotics	Relative incorporation of			
	Phenyl- alanine	Leucine	Iso- leucine	Serine
	100	5	1	0
Lividomycin A 0.15 µg/ml	62	7	3	1
Kanamycin 5 μg/ml	26	7	4	1

The reaction mixture contained in 0.2 ml: *E. coli* S-30 1.4 mg, poly U 3 μ g, tRNA 100 μ g, ¹⁴C-amino acid 0.02 μ Ci, ATP 1 mM, PEP 5 mM, pyruvate kinase 4 μ g, GTP 0.03 mM, Tris-HCl, pH 7.6, 50 mM, NH₄Cl 100 mM, MgCl₂ 20 mM, and 2-mercaptoethanol 6 mM. It was incubated at 37°C for 40 minutes. 100=30.2 pmoles.

affected by lividomycin A.

The results indicate that the primary site of action of lividomycin A is in the bacterial system of protein synthesis. The mechanism of action of lividomycin A seems to be similar to that of other aminoglycosides such as streptomycin, kanamycin, paromomycin, etc.

Fig. 1. Effects of antibiotics on f2 RNAdirected protein synthesis.

The reaction mixture contained in 1.0 ml: E. coli Q13 ribosomes (washed with 1 m NH₄Cl) 58.2 A_{260} , S-150 2 mg, initiation factors 345 μ g, f 2 RNA 400 μ g, 19 amino acids except valine 0.025 mM, tRNA 200 μ g, fMet-tRNA 150 μ g, ¹⁴Cvaline (169 mCi/mmole) 0.2 μ Ci, pH 7.8, Tris-HCl 50 mM, NH₄Cl 100 mM, Mg(AeO)₂ 8 mM, DTT 1 mM, ATP 1 mM, PEP 5 mM, pyruvate kinase 4 μ g, and GTP 0.03 mM.

Fig. 2. Effects of antibiotics on polyphenylalanine synthesis.

The reaction mixture contained in 0.2 ml: E. coli S-30 870 µg protein, poly U 10 µg, tRNA 10 µg, 14C-phenylalanine (405 mCi/mmole) 0.04 µCi, ATP 1 mM, PEP 5 mM, pyruvate kinase 4 µg, GTP 0.03 mM, pH 7.8, Tris-HCI 50 mM, NH₄Cl 100 mM, MgCl₂ 10 mM, and 2-mercaptoethanol 6 mM.

The author deeply appreciates the kind directions of Prof. H. UMEZAWA and N. TANAKA during this study.

References

 MORI, T.; T. ICHIYANAGI, H. KONDO, K. TOKUNAGA, T. ODA & K. MUNAKATA: Studies on new antibiotic lividomycins. II. Isolation and characterization of lividomycins A, B and other aminoglycosidic antibiotics produced by Streptomyces lividus. J. Antibiotics $24:339{\sim}346$, 1971

- ODA, T.; T. MORI, Y. KYOTANI & M. NAKA-YAMA: Studies on new antibiotic, lividomycins. IV. Structure of lividomycin A. J. Antibiotics 24: 511~518, 1971
- OKUYAMA, A.; N. MACHIYAMA, T. KINOSHITA & N. TANAKA: Inhibition by kasugamycin of initiation complex formation on 30S ribosomes. Biochem. Biophys. Res. Communs. 43:196~199, 1971